skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lifshitz-Assaf, Hila"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This article proposes the solver-aware system architecting framework for leveraging the combined strengths of experts, crowds and specialists to design innovative complex systems. Although system architecting theory has extensively explored the relationship between alternative architecture forms and performance under operational uncertainty, limited attention has been paid to differences due to who generates the solutions. The recent rise in alternative solving methods, from gig workers to crowdsourcing to novel contracting structures emphasises the need for deeper consideration of the link between architecting and solver-capability in the context of complex system innovation. We investigate these interactions through an abstract problem-solving simulation, representing alternative decompositions and solver archetypes of varying expertise, engaged through contractual structures that match their solving type. We find that the preferred architecture changes depending on which combinations of solvers are assigned. In addition, the best hybrid decomposition-solver combinations simultaneously improve performance and cost, while reducing expert reliance. To operationalise this new solver-aware framework, we induce two heuristics for decomposition-assignment pairs and demonstrate the scale of their value in the simulation. We also apply these two heuristics to reason about an example of a robotic manipulator design problem to demonstrate their relevance in realistic complex system settings. 
    more » « less
  2. Analogy—the ability to find and apply deep structural patterns across domains—has been fundamental to human innovation in science and technology. Today there is a growing opportunity to accelerate innovation by moving analogy out of a single person’s mind and distributing it across many information processors, both human and machine. Doing so has the potential to overcome cognitive fixation, scale to large idea repositories, and support complex problems with multiple constraints. Here we lay out a perspective on the future of scalable analogical innovation and first steps using crowds and artificial intelligence (AI) to augment creativity that quantitatively demonstrate the promise of the approach, as well as core challenges critical to realizing this vision. 
    more » « less